6 research outputs found

    Imatinib treatment of poor prognosis mesenchymal-type primary colon cancer: A proof-of-concept study in the preoperative window period (ImPACCT)

    Get PDF
    Background: The identification of four Consensus Molecular Subtypes (CMS1-4) of colorectal cancer forms a new paradigm for the design and evaluation of subtype-directed therapeutic strategies. The most aggressive subtype - CMS4 - has the highest chance of disease recurrence. Novel adjuvant therapies for patients with CMS4 tumours are therefore urgently needed. CMS4 tumours are characterized by expression of mesenchymal and stem-like genes. Previous pre-clinical work has shown that targeting Platelet-Derived Growth Factor Receptors (PDGFRs) and the related KIT receptor with imatinib is potentially effective against mesenchymal-type colon cance

    One-fits-all pretreatment protocol facilitating Fluorescence in Situ Hybridization on formalin-fixed paraffin-embedded, fresh frozen and cytological slides

    Get PDF
    Background: The Fluorescence In Situ Hybridization (FISH) technique is a very useful tool for diagnostic and prognostic purposes in molecular pathology. However, clinical testing on patient tissue is challenging due to variables of tissue processing that can influence the quality of the results. This emphasizes the necessity of a standardized FISH protocol with a high hybridization efficiency. We present a pretreatment protocol that is easy, reproducible, cost-effective, and facilitates FISH on all types of patient material simultaneously with good quality results. During validation, FISH analysis was performed simultaneously on formalin-fixed paraffin-embedded, fresh frozen and cytological patient material in combination with commercial probes using our optimized one-fits-all pretreatment protocol. An optimally processed sample is characterized by strong specific signals, intact nuclear membranes, non-disturbing autofluorescence and a homogeneous DAPI staining. Results: In our retrospective cohort of 3881 patient samples, overall 93% of the FISH samples displayed good quality results leading to a patient diagnosis. All FISH were assessed on quality aspects such as adequacy and consistency of signal strength (brightness), lack of background and / or cross-hybridization signals, and additionally the presence of appropriate control signals were evaluated to assure probe accuracy. In our analysis 38 different FISH probes from 3 commercial manufacturers were used (Cytocell, Vysis and ZytoLight). The majority of the patients in this cohort displayed good signal quality and barely non-specific background fluorescence on all tissue types independent of which commercial probe was used. Conclusion: The optimized one-fits-all FISH method is robust, reliable and reproducible to deliver an accurate result for patient diagnostics in a lean workflow and cost-effective manner. This protocol can be used for widespread application in cancer and non-cancer diagnostics and research

    Targeted next generation sequencing as a reliable diagnostic assay for the detection of somatic mutations in tumours using minimal DNA amounts from formalin fixed paraffin embedded material

    Get PDF
    Background Targeted Next Generation Sequencing (NGS) offers a way to implement testing of multiple genetic aberrations in diagnostic pathology practice, which is necessary for personalized cancer treatment. However, no standards regarding input material have been defined. This study therefore aimed to determine the effect of the type of input material (e.g. formalin fixed paraffin embedded (FFPE) versus fresh frozen (FF) tissue) on NGS derived results. Moreover, this study aimed to explore a standardized analysis pipeline to support consistent clinical decision-making. Method We used the Ion Torrent PGM sequencing platform in combination with the Ion AmpliSeq Cancer Hotspot Panel v2 to sequence frequently mutated regions in 50 cancer related genes, and validated the NGS detected variants in 250 FFPE samples using standard diagnostic assays. Next, 386 tumour samples were sequenced to explore the effect of input material on variant detection variables. For variant calling, Ion Torrent analysis software was supplemented with additional variant annotation and filtering. Results Both FFPE and FF tissue could be sequenced reliably with a sensitivity of 99.1%. Validation showed a 98.5%concordance between NGS and conventional sequencing techniques, where NGS provided both the advantage of low input DNA concentration and the detectio

    Multifocal occurrence of extra-abdominal desmoid type fibromatosis – A rare manifestation. A clinicopathological study of 6 sporadic cases and 1 hereditary case

    Get PDF
    Desmoid-type fibromatosis, also called desmoid tumor, is a locally aggressive myofibroblastic neoplasm that usually arises in deep soft tissue with significant potential for local recurrence. It displays an unpredictable clinical course. β-Catenin, the genetic key player of desmoid tumors shows nuclear accumulation due to mutations that preve

    Recommendations for the clinical interpretation and reporting of copy number gains using gene panel NGS analysis in routine diagnostics

    Get PDF
    Next-generation sequencing (NGS) panel analysis on DNA from formalin-fixed paraffin-embedded (FFPE) tissue is increasingly used to also identify actionable copy number gains (gene amplifications) in addition to sequence variants. While guidelines for the reporting of sequence variants are available, guidance with respect to reporting copy number gains from gene-panel NGS data is limited. Here, we report on Dutch consensus recommendations obtained in the context of the national Predictive Analysis for THerapy (PATH) project, which aims to optimize and harmonize routine diagnostics in molecular pathology. We briefly d

    Multicenter Comparison of Molecular Tumor Boards in The Netherlands: Definition, Composition, Methods, and Targeted Therapy Recommendations

    Get PDF
    Background: Molecular tumor boards (MTBs) provide rational, genomics-driven, patient-tailored treatment recommendations. Worldwide, MTBs differ in terms of scope, composition, methods, and recommendations. This study aimed to assess differences in methods and agreement in treatment recommendations among MTBs from tertiary cancer referral centers in The Netherlands. Materials and Methods: MTBs from all tertiary cancer referral centers in The Netherlands were invited to participate. A survey assessing scope, value, logistics, composition, decision-making method, reporting, and registration of the MTBs was completed through on-site interviews with members from each MTB. Targeted therapy recommendations were compared using 10 anonymized cases. Participating MTBs were asked to provide a treatment recommendation in accordance with their own methods. Agreement was based on which molecular alteration(s) was considered actionable with the next line of targeted therapy. Results: Interviews with 24 members of eight MTBs revealed that all participating MTBs focused on rare or complex mutational cancer profiles, operated independently of cancer type–specific multidisciplinary teams, and consisted of at least (thoracic and/or medical) oncologists, pathologists, and clinical scientists in molecular pathology. Differences were the types of cancer discussed and the methods used to achieve a recommendation. Nevertheless, agreement among MTB recommendations, based on identified actionable molecular alteration(s), was high for the 10 evaluated cases (86%). Conclusion: MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational cancer profiles. We propose a “Dutch MTB model” for an optimal, collaborative, and nationally aligned MTB workflow. Implications for Practice: Interpretation of genomic analyses for optimal choice of target therapy for patients with cancer is becoming increasingly complex. A molecular tumor board (MTB) supports oncologists in rationalizing therapy options. However, there is no consensus on the most optimal setup for an MTB, which can affect the quality of recommendations. This study reveals that the eight MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational profiles. The Dutch MTB model is based on a collaborative and nationally aligned workflow with interinstitutional collaboration and data sharing
    corecore